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Abstract  14 

Identification of various sources and quantification of their contributions are a necessary step to formulating scientifically 15 

sound pollution control strategies. Receptor model is widely used in source apportionment of fine particles. However, most 16 

of the previous studies are based on traditional filter collection and lab analysis of aerosol chemical species (usually ions, 17 

elemental carbon (EC), organic carbon (OC) and elements) as inputs. In this study, we conducted robust online 18 

measurements of a range of organic molecular makers and trace elements, in addition to the major aerosol components 19 

(ions, OC and EC), in urban Shanghai in the Yangtze River Delta region, China. The large suite of molecular and elemental 20 

tracers, together with water-soluble ions, OC and EC, provide data for establishing measurement-based source 21 

apportionment methodology for PM2.5. We conducted source apportionment using positive matrix factorization (PMF) and 22 

compared PMF solutions with molecular makers added (i.e. MM-PMF) and those without organic markers. MM-PMF 23 

identified 11 types of pollution sources, with biomass burning, cooking and secondary organic aerosol (SOA) as the 24 

additional sources identified. The three sources accounted for 4.9%, 2.6% and 14.7% of the total PM2.5 mass, respectively. 25 

During the whole campaign, the secondary source is an important source of atmospheric pollution, the average contribution 26 

of secondary pollution sources is as high as 63.8% of the total PM2.5 mass. Grouping different sources to secondary and 27 

primary, we note that SOC and POC contributed 45.1% and 54.9%, respectively. It is worth noting that the contribution of 28 

cooking to PM2.5 mass only account for 2.6%, but it contributed to 10.7% of OC. Episodic analysis indicated that secondary 29 

nitrate was always the main cause of PM2.5 pollution, while during non-episodic hours, vehicle exhaust made a significant 30 
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contribution. Through the application of the above-mentioned techniques to the Yangtze River Delta, more insights are 31 

gained on the sources, formation mechanism and pollution characteristics of PM2.5 in this region. 32 

1. Introduction 33 

In recent years, with the increasingly prominent problem of air quality, more and more attention has been paid to the 34 

research of air pollution, which focuses on the study of atmospheric particulate matter (PM), especially fine particulate 35 

matter (PM2.5) (Chen et al., 2007; Zhang et al., 2009a). The study of chemical composition of atmospheric PM2.5 is to help 36 

understand the source, formation mechanism, and environmental effects. PM2.5 pollution reduces atmospheric visibility 37 

(Chow et al., 2004) and exposure to PM2.5 is positively correlated with adverse health effects (Nel, 2005; Lippmann et al., 38 

2009; Mimura et al., 2014; Liu et al., 2016; Jimenez et al., 2009). PM2.5 in the atmosphere also affects the radiation balance 39 

on the ground by scattering or absorbing solar radiation and changing the properties of clouds, which has an impact on 40 

global climate (Foley et al., 2010; Ramanathan et al., 2001; Kanakidou et al., 2005). Therefore, PM2.5 pollution has become 41 

the primary control target to improve air quality in urban environments. Studying the composition of PM2.5 and identifying 42 

its sources have practical significance for the understanding of PM2.5 pollution characteristics and environmental effects. 43 

The analysis of the sources is of great significance for PM2.5 emission reduction and pollution control (Huang et al., 44 

2014; Wang et al., 2017). Generally, the sources of pollution can be qualitatively assessed according to presence of chemical 45 

components characteristic to specific sources. In addition, receptor models can be used to further identify and quantify the 46 

sources of atmospheric PM2.5 (Hopke, 2016; Jaeckels et al., 2007; Lee et al., 2008; Sofowote et al., 2014;). Compared with 47 

other methods, Positive Matrix Factorization (PMF) (Paatero & Tapper, 1994) does not need to input the source profiles, 48 

and we can simultaneously analyze the source profiles and contributions of various sources. Hence, PMF has been widely 49 

used in the source analysis of PM2.5 all over the world, for example, Beijing (Song et al., 2006; Yao et al., 2016), Shanghai 50 

(Wang et al., 2018; Wang et al., 2013; Feng et al., 2013; Feng et al., 2012; Wang et al., 2015; Wang et al., 2014; Zhao et 51 

al., 2015; Qiao et al., 2016), Hong Kong (Hu et al., 2010; Yuan et al., 2006), New York (Zhou et al., 2019; Masiol et al., 52 

2017), and other regions (Ulbrich et al., 2009; Fang et al., 2015).  53 

High time resolution measurements are inherently advantageous to the source analysis, because they are able to 54 

capture the diurnal variations of the main source activities (such as vehicle exhaust) and secondary formation processes. 55 

High time resolution data provide opportunities to study short-term source distributions. There are limited number of source 56 

apportionment studies exploring the combined high-time resolution data set including various aerosol components such as 57 

trace elements (Wang et al., 2018). Online-measurement based source apportionment studies in the past, so far, are mainly 58 
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based on PM1 Aerodyne aerosol mass spectrometer (AMS) or Aerosol chemical speciation monitoring (ACSM) (Al-59 

Naiema et al., 2018). AMS or ACSM provide data on ion fragments, which only retain partial information for their parent 60 

molecules. Multiple parent molecules could lead to the same fragments during the ionization process in AMS or ACSM, 61 

which introduce ambiguity in relying on fragment ions for source differentiation. Accurate quantitative monitoring of 62 

atmospheric organic matter on the molecular level is critical to source analysis. 63 

Shanghai is the financial center of China, with a large population and a total area of 6,340 km2. Past source 64 

apportionment studies of PM2.5 in Shanghai were either based on offline filters using receptor models (Du et al., 2017; 65 

Chang et al., 2018), or emissions with numerical models (Li et al., 2015; Shu et al., 2019; Li et al., 2019; Feng et al., 2019). 66 

The past receptor modeling studies relied on chemical composition data derived from 24-h time-integrated filter samples 67 

followed by off-line laboratory analysis. The off-line nature severely limits its utility in addressing episodic pollution events 68 

and in providing data to assess emission-based model evaluation of pollution sources and regional transport. Some 69 

researchers have conducted online PM2.5 source apportionment, however, previous studies were mainly using the traditional 70 

aerosol species as inputs (Wang et al., 2018). Organic matter constitutes a considerable share of PM2.5, while the online 71 

analytical techniques used in the past were not suitable for describing this fraction in full.  72 

In this study, online monitoring of atmospheric PM2.5 compositions, including inorganic ions, organic carbon (OC), 73 

elemental carbon (EC), trace elements and organic molecular markers, was conducted in Shanghai from November 9 to 74 

December 3, 2018. The purpose is to use the detailed high-time resolution speciation data (especially organic molecular 75 

markers) to identify the sources of PM2.5 based on molecular-marker based PMF. This study gives insights into more 76 

detailed source contributions, changes of sources and effects of the air pollution control strategies. 77 

2. Methodology 78 

2.1 Online measurement 79 

We conducted an observation for PM2.5 and its major chemical compositions (including inorganic ions, OC, EC, 80 

elements, and organic tracers) from November 9 to December 3, 2018. The organic tracers were measured in Shanghai 81 

Academy of Environmental Sciences, which is a reprehensive site for the urban city. The inorganic ions, OC/EC, and 82 

elements were measured in Shanghai Pudong Environmental Monitoring Station, which is also a typical site for the urban 83 

city. Monitoring site locations are shown in Figure 1. The two sites are 12 km apart. We combined these data in order to 84 

obtain a more comprehensive chemical characterization of the urban PM2.5 air pollution situation.  85 
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 86 

Figure 1. Locations of the two sampling sites in Shanghai, China  87 

The concentration of PM2.5 was measured by an online beta attenuation particulate monitor (FH 62 C14 series, Thermo 88 

Fisher Scientific) (Qiao et al., 2014). Carbonaceous materials (OC and EC) were monitored by a semi continuous OC/EC 89 

analyzer (model RT-4, Sunset Laboratory, Tigard, OR, USA) (Nicolosi et al., 2018; Zhang et al., 2017). The water-soluble 90 

inorganic ions were measured by Monitor for Aerosols and Gases (MARGA, Model ADI 2080, Applikon Analytical B.V.) 91 

(Makkonen et al., 2012; Griffith et al., 2015). Concentrations of 22 elements in PM2.5 were measured by an ambient 92 

elemental monitor (Xact 625 Ambient Continuous Multi-metals Monitor, Cooper Environmental Services, Tigard, OR, 93 

USA) using nondispersive X-ray fluorescence (XRF) analysis (Battelle, 2012; Jeong et al., 2019). Quantification of hourly 94 

speciated organic compounds were achieved using a Thermal desorption Aerosol Gas Chromatograph (TAG) (Williams et 95 

al., 2014; Zhao et al., 2013a; Isaacman et al., 2014). The operation details and data quality are described in a separate paper 96 

(Wang et al., 2019). Figure S1 shows the comparison of reconstructed and measured PM2.5 mass for samples collected for 97 

this study (Wang et al., 2016; Huang et al., 2014). The meteorological parameters are from the open data at Hongqiao 98 

airport (available at http://www.wunderground.com). 99 

2.2 PMF receptor model 100 

PMF is a bilinear factor analysis method, which is widely used to identify pollution sources and quantify the 101 
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contribution of source sectors to the concentration of ambient air pollutants at receptor sites, with an assumption of mass 102 

conservation and a chemical mass balance between emission source and receptors. In this study, the Environmental 103 

Protection Agency (EPA) PMF version 5.0 (Norris et al., 2014) was applied to perform the analysis. PMF decomposes the 104 

measured data matrix, Xij, into a factor profile matrix, f kj, and a factor contribution matrix, gik, (Eq 1): 105 

𝑥𝑖𝑗 = ∑ 𝑔𝑖𝑘
𝑝
𝑘=1 𝑓𝑘𝑗 + 𝑒𝑖𝑗                                                                       (1) 106 

 Q = ∑ ∑ (𝑒𝑖𝑗/𝑢𝑖𝑗)2𝑚
𝑗=1

𝑛
𝑖=1                                                                           (2) 107 

In eq 1, Xij is the measured ambient concentration of target pollutants; gik is the source contribution of the kth factor 108 

to the ith sample, and fkj is the factor profile of the jth specie in the kth factor; eij is the residual concentration for each data 109 

point. PMF seeks a solution that minimizes an object function Q (Eq 2), based on the uncertainties of each observation uij. 110 

The user provides the uij for each data point. The selection of the best factor in this study and the error estimation diagnostics 111 

for each model result are described in the supplement information (Figure S2, Figure S3, Table S1, Table S2).  112 

PMF model assumes that the quantity of the input species is conserved, and the source profile is unchanged. In order 113 

to minimize the impact of organic matter degradation on the deviation of mass conservation hypothesis, organic species 114 

with low volatility and low reactivity are selected as input. The requirement of constant source profiles is not strictly met 115 

when the receptor model is applied to measurement data covering a long duration (e.g., months or longer). However, 116 

understanding/progress can be achieved despite the non-strict adherence to the requirements of the constant source profile. 117 

The source profile parsed by PMF can be viewed as the averaged profile over the entire sampling period. In an atmospheric 118 

environment, both primary organic aerosol (POA) and secondary organic aerosol (SOA) have the problem of changing 119 

source profiles. Therefore, it is necessary and vital to obtain high time resolution data, preferably several hours for a sample 120 

of data or shorter, as an input file for PMF model. The input files in this study are hourly data and the time span of whole 121 

campaign is less than one month. As such, the source type information will not change significantly.  122 

In this study, a total of 289 samples has been collected. The hourly chemical species selected as input to PMF model 123 

contain 13 elements, 4 inorganic species, the carbon component (OC and EC), organic markers (including polycyclic 124 

aromatic hydrocarbons (PAHs) and anhydro sugars, etc.), and PM2.5 mass concentration. Traditional PMF (PMFt, “t” refers 125 

to traditional) which include only PM2.5 mass, elements, inorganic ions, OC and EC as inputs, and molecular marker based-126 

PMF (MM-PMF) (Al-Naiema et al., 2018; Wang et al., 2017; Zhang et al., 2009b) with organic markers added as inputs 127 

on the basis of above species were performed separately to do source apportionment.  128 

The uncertainty of each data point is calculated according to Eq 3: 129 
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𝑢𝑖𝑗 = √(𝑥𝑖𝑗 × 𝐸𝐹)2 + (
1

2
× 𝑀𝐷𝐿)2                                                                  (3) 130 

where MDL is the method detection limit and EF is the error fraction determined by the user and associated with the 131 

measurement uncertainty. The concentration data of species below the detection limit were replaced by 1/2 of the MDL, 132 

and the uij was calculated by 5/6 of the MDL. For the concentration data of missing species, the missing value is the 133 

geometric average value of the concentration of this species, and its uij is four times the geometric average value. 134 

2.3 Trajectory analysis 135 

The backward trajectory analysis is a useful tool to identify the influence of air mass path on PMF resolved 136 

sources. 36-h duration backward trajectories arriving at an altitude of 100 m above ground level (AGL) over the site were 137 

calculated using the NOAA HYSPLIT model (https://ready.arl. noaa.gov/HYSPLIT.php), deploying the 0.5° Global Data 138 

Assimilation System (GDAS) meteorological data. The sampling days were then classified into four clusters according to 139 

the geographical origin and movement process of the trajectories, i.e., two oceanic trajectories, and two continental 140 

trajectories. 141 

3. Results and discussion 142 

The pollution episodes occurred mostly in winter, due to adverse atmospheric conditions（such as more frequent 143 

stagnation of atmospheric movement）and enhanced the impact on air quality from local and regional emissions. The 144 

hourly meteorological parameters and PM2.5 concentration during the monitoring time is shown in Fig. 2. The concentration 145 

levels of the major species measured are provided in Table 1. The average temperature was 14℃, the relative humidity 146 

(RH) was 79.9%, the wind speed (WS) was 3m/s during the campaign. The average PM2.5 concentrations were 46.3±33.8 147 

μg/m3, with organic matter contributing to 19.6% of the total mass. Nitrate, sulfate, and ammonium contributed to 32.0%, 148 

16.5%, and 16.2% of PM2.5, respectively. Measured total elements account for 3.5% of PM2.5 mass on average.  149 
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Figure 2. Time series of meteorological parameters and PM2.5 during the field campaign. 151 
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Table 1. Measured PM2.5 major components (μg/m3) used in the PMF analysis in this study 152 

Compound Average Stdev 

PM2.5 46.3 33.8 

Cl- 0.78 0.52 

Nitrate 14.81 15.12 

Sulfate 7.65 4.31 

Ammonium 7.47 6.25 

EC 1.59 1.13 

OC 6.48 2.79 

As 0.006 0.005 

Ba 0.024 0.017 

Ca 0.137 0.104 

Cr 0.004 0.005 

Cu 0.012 0.008 

Fe 0.445 0.627 

K 0.381 0.196 

Mn 0.065 0.069 

Ni 0.004 0.003 

Pb 0.025 0.026 

Si 0.421 0.322 

V 0.0031 0.0029 

Zn 0.114 0.099 

 153 

Table 2. Abundance and naming of measured organic tracers (ng/m3) used in the MM-PMF Analysis 154 

Naming Grouping Average Stdev 

PAHs252 
benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[e]pyrene, and 

benzo[a]pyrene 
1.44 1.43 

PAHs276 benzo[ghi]perylene, and indeno[1,2,3-cd]pyrene 0.559 0.529 

C6-8 DICAs Adipic acid, Pimelic acid, and Suberic acid 17.45 18.46 

C9-acids 9-Oxononanoic acid, and Azelaic acid 9.25 6.46 

SFAs Palmitic acid, and Stearic acid 71.57 60.86 

Mannosan  1.54 1.51 

Levoglucosan  45.91 39.17 

OHBAs 3-hydroxybenzoic acid, and 4-hydroxybenzoic acid 1.05 0.85 

α-pinT Pinic acid,and 3-methyl-1,2,3-butanetricarboxylic acid 21.05 19.22 

DHOPA 2,3-dihydroxy-4-oxopentanoic acid 3.93 4.92 

Phthalic acid  9.13 10.28 

3.1 PM2.5 source apportionment 155 

In this study, PMF source analysis was conducted in two scenarios. They were MM-PMF with organic tracers and 156 
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PMFt without organic tracers included and the results were compared in detail. The abundance and nomenclature of the 157 

organic tracers used are shown in Table 2. The priority input species for PMF analysis are those with high abundance and 158 

characteristics of different sources, especially organic compounds with lower volatility and lower reactivity were selected 159 

as input for MM-PMF. Highly correlated organic species (R> 0.8), indicating common sources, are clustered together to 160 

reduce the number of species and to avoid collinearity problems in MM-PMF (Wang et al., 2017).  161 

3.1.1 MM-PMF results 162 

In PMF, the optimal number of factors is a compromise between identifying factors with the best physical explanations 163 

and achieving a sufficiently good fit for all species. In PMF solutions of too few factors, different sources are combined 164 

together, the resolved sources cannot fully explain the individual species; while too many factors may split one source into 165 

multiple uninterpretable factors. Initially, 7 to 14 factors were tested, and the final factor numbers were determined by 166 

examining the change in Q/Qexp. Finally, the 11-factor solution for MM-PMF was selected as it gave the most reasonable 167 

factor profiles (Figure S2). Table S1 shows the summary of error estimation diagnostics from BS, DISP and BS-DISP for 168 

MM-PMF.The summary of the model performance for individual input species for the 11-factor solution in MM-PMF are 169 

given in Table S3. Nevertheless, the base run results still have certain degrees of factor mixing. As the source specific 170 

tracer compounds have similar temporal variations and the diversity of species components contained in the source, 171 

chloride, sulfate and certain metal elements were found in different PMF-resolved profiles.  172 

Factor recognition was based on the highest loaded species of each factor. The factor profiles of the 11-factor solution 173 

are shown in Fig. 3. Secondary nitrate factor (F1) was identified by high concentrations of nitrate and ammonium, the 174 

distribution of ammonium and nitrate in F1 is 48.1% and 66.2% respectively. The secondary sulfate factor (F2) is 175 

characterized by the highest loading of sulfate (35.3%). In addition, ammonium in the secondary sulfate factor distribution 176 

ranks the second among the eleven factors, less than F1. A small amount of organics acids and PAHs also appear in the two 177 

factors. OC contribution from the secondary sulfate, secondary nitrate, and SOA factors were assumed as secondary OC 178 

(SOC), whereas OC from the other factors was assumed to be primary OC (POC). The secondary sulfate factor contributes 179 

the most to SOC, which can be seen from the correlation of the respective species with OC. Percentage contribution of 180 

various source factors to PM2.5 and to OC based on MM-PMF show in Fig.4. F1 and F2 contributed 33.5% and 15.6% to 181 

total PM2.5 mass, respectively. The SOC associated with secondary nitrate and sulfate factors accounted for 2.68 μg/m3 182 

(41.3%) on average across the whole observation period. The diurnal variation of F1 showed much higher contributions at 183 

nighttime; while for F2, no obvious diurnal contrast was observed. F1 has the medium and highest correlation with NOx 184 
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(R =0.54) and CO (R = 0.79) while F2 showed moderate correlations with SO2 (R = 0.32) and CO (R =0.36) (Table S4). 185 

These results suggest that F1 may represent condensation of oxidation products of local emissions in the nighttime plus 186 

regional transportation. Sun et al. (2006) observed increased sulfate formation under high RH in winter in urban city. 187 

During the observation period, the RH is high during the day and night, and the daytime temperature is higher than the 188 

nighttime. Therefore, the combined effects of aqueous phase oxidation and daytime photochemical reactions, leading to 189 

the not obvious daily variation of the secondary sulfate factor. 190 

 191 

Figure 3. Resolved factor profiles (left) and factor contributions (right) in eleven-factor solution in MM-PMF 192 

The third factor (F3) has a high abundance of EC, OC, Ca, Cu and also contains some organic tracers (PAHs and 193 

organic acids, etc.), contributing to 11.3% of the total PM2.5 mass on average. The source of vehicle exhaust contributes the 194 

most to POC, accounting for 16.2% to OC. Vehicle exhaust is an important source for carbonaceous species, the presence 195 

of Cu may originate from both fuel/lubricant combustion and brake abrasions (Adachi and Tainosho, 2004; Pant and 196 

Harrison, 2013), and the element Ca may be derived from road dust. The influence of vehicle exhaust on this factor is 197 

supported by the peak hours at 7:00-9:00 am and 5:00-7:00 pm in daily variation (Fig. 5). In addition, the high correlation 198 
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with NOx (R=67) and CO (R=58) indicate that vehicle exhuast have a significant impact on this factor. The higher nighttime 199 

than daytime contribution of this factor may suggest influence from the planetary boundary layer height variation. In the 200 

daytime, higher boundary height leads to more vertical mixing of the pollutants and facilitates dispersion, while the stagnant 201 

nighttime atmosphere easily accumulates pollutants (Liu and Liang, 2010). 202 
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Figure 4. Percentage contribution of various source factors to PM2.5 (a) and to OC (b) based on MM-PMF. 204 

Factor 4 contains high loads of Fe and Mn as source tracers, in addition, it contains Ba as well. Most of these metal 205 

elements come from industries related to steel production. Although metallic elements are not exclusive tracers of industrial 206 

emissions, there are no other characteristic elements or compounds to track industrial emissions.In addition, the diurnal 207 

variation of F4 is similar to that of F3, which may be due to the tire wear in the morning and evening peak. Manganese-208 

ferro, Zn, Cu and other elements have also been reported to be related to tire wear (Pant and Harrison, 2013), and Wang et 209 

al. (2018) also revealed this in their research on online data. While F2 showed moderate correlations with SO2 (R = 0.52) , 210 

CO(R=0.35)and NOX(R=49),therefore, F4 is considered as the industrial and Vehicle emission source.The factor 211 

contribution to total PM2.5 mass and OC was minor, only 3.0% and 2.7%, respectively. Analysis of membrane samples in 212 

the area did not reveal this phenomenon (Du et al., 2017; Huang et al., 2014; Qiao et al., 2016), suggesting the benefit of 213 

the online high-resolution measurement.The fifth factor (F5) is characterized by high concentrations of Cr and Ni, which 214 

are often used in industrial processes such as plating, tanning, and metallurgy (Karar et al., 2006; Borai et al., 2002). This 215 

factor showed best correlation with CO (R = 59). No diurnal variation was observed. The factor contribution to total PM2.5 216 

and OC mass were minor, only 1.0% and 0.8%. The residual oil combustion factor (F6) was identified with V and Ni as 217 

tracers, of which V is often used as a tracer for residual oil combustion. The contribution of this factor mainly comes from 218 

ship transportation (Zhao et al., 2013b). The diurnal contribution at night was greater than that during daytime. The factor, 219 

residual oil combustion, were minor contributors to PM2.5, accounting for 1.8%, but the contribution (10.7%) of this factor 220 

to OC is not negligible. The dust factor (F7) was distinguished by crustal elements Ca, Si, and Ba. The diurnal variation of 221 
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this factor showed a broad peak during the daytime, and negative correlation with RH (R=-0.26), suggesting an influence 222 

from meteorological conditions. The factor (dust) contribution to total PM2.5 and OC mass were 5.0% and 1.1%, 223 

respectively. 224 

 225 

Figure 5. Diurnal variation of various source factors based on MM-PMF. (25th and 75th percentile boxes, 10th and 90th 226 

percentile whiskers; lines inside the boxes represent the hourly median and the red points represent the hourly mean) 227 

The coal combustion factor (F8) contains high loading of metals As and Pb, accounting for 6.7 % of PM2.5 mass on 228 

average and 7.1% to OC, it is mostly associated with coal combustion (Chen et al., 2013). Good correlations with SO2 (R 229 
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= 59) and CO (R =56) further support the identification of this factor. Based on analysis of MM-PMF, there is no specific 230 

organic tracers such as PAHs present in the source. The results are different from those of Wang et al. (2017) and Yu et al. 231 

(2016), which are related to regional differences in source classes.  232 

The F9 and F10 were resolved, namely, biomass burning identified by levoglucosan and mannosan; cooking aerosol 233 

by SFAs (Palmitic acid, and Stearic acid) and C9-acids (9-oxononanoic acid, and azelaic acid). Levoglucosan is uniquely 234 

emitted by biomass burning activities (Engling et al., 2006; Feng et al., 2013). Using Levoglucosan to indicate biomass 235 

burning may avoid the ambiguity of using K to determine the biomass burning source, which improves the accuracy of 236 

source analysis. This factor, contributed 4.9% and 5.7% of total PM2.5 and OC mass on average, respectively. In addition, 237 

biomass burning contains high-loading of five-ring and six-ring PAHs that are considered to be derived from a mixed 238 

combustion source (including coal combustion, biomass burning, etc.). It is worth noting that the contribution of cooking 239 

to PM2.5 mass only account for 2.6%, but it contributed 10.7% to OC. In addition, by analyzing the diurnal variation of 240 

biomass burning and cooking, the biomass burning emission at night is greater than at daytime, while cooking has an 241 

obvious peak value during 5:00-9:00 pm, which is consistent with the local dining consumption habits in Shanghai.  242 

SOA was identified by toluene SOA tracer (2,3-dihydroxy-4-oxopentanoic acid) , α-pinene SOA tracers (pinic acid 243 

and 3-methyl-1,2,3-butanetricarboxylic acid) and phthalic acid. It is a major source of PM2.5, accounting for 14.7%. SOC 244 

from the SOA factor accounted for 0.25 μg/m3 (3.8%) on average to OC. SOA related to toluene was considered as 245 

anthropogenic SOA, and SOA containing pinic acid was considered as biogenic SOA. It was found that there was a similar 246 

daily changes between SOA and secondary nitrate factor, indicating some commonality in their formation processes. Many 247 

studies have documented the enhancement of biogenic SOA production by anthropogenic species through creating a more 248 

acidic environment in the aerosol (Jang et al., 2002; Wang et al., 2017).   249 

Overall, the source apportionment results showed that secondary sources accounted for 63.9% of the total PM2.5 mass 250 

from MM-PMF, and the contribution of secondary nitrate to PM2.5 was greater than that of secondary sulfate. SOA is the 251 

third largest source of PM2.5, followed by vehicle exhaust, which is the largest source of primary sources. The SOC 252 

associated with secondary nitrate, secondary sulfate and SOA factors accounted for 45.1% on average of the total OC mass 253 

across all the study period. The high loading of SOC in the secondary nitrate and sulfate factor compared with the SOA 254 

factor may indicate the potential mix of the SOA in secondary sulfate factor due to the limited organic tracers included. 255 

POC accounts for 3.55 μg/m3 (54.8%) of the total OC. And vehicle exhaust contributes the most to POC. MM-PMF gives 256 

more detailed allocation of PM2.5 to more accurate source factors.  257 
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3.1.2. Back Trajectory Analysis of MM-PMF-Resolved Sources 258 

Previous studies based on source models have shown the importance of regional transportation and local emissions to 259 

Shanghai haze events. Wang et al. (2014) identified two types of haze events in November 2010: local emission plays a 260 

dominant role in the case of weak wind (WS < 0.5m /s), while in the case of stroke (~ 2m /s), regional transport from the 261 

upwind region contributes the most. Li et al. (2015) found that local emission (~50%) in Shanghai in January 2013 was the 262 

most significant factor causing pollution. Wang et al. (2018) studied with online high-resolution data in December 2014, 263 

and found that local emission had an obvious impact on most pollution sources, while dust emission and coal combustion 264 

had a greater impact on the region.  265 

 266 

Figure 6. Clustering of air mass trajectories during observation 267 

During the observation period, all the air mass trajectories at the receptor are shown in Figure S4. Fig.6 and table S5 268 

show the clustering results of all air mass trajectories and the average PM2.5 concentration measured at the sampling time 269 

represented by each cluster. These four clusters accounted for 16.1%, 40.7%, 14.3% and 28.9% of the total trajectory, 270 

respectively. It can be seen from Fig.7 that the composition varies with the source of the air mass. The average concentration 271 

of modeled PM2.5 of each cluster analyzed by the model was 53.7 μg/m3, 61.5 μg/m3, 32.6 μg/m3 and 23.0 μg/m3, 272 

respectively. By comparing the four clusters, nitrate was the most important reason for PM pollution in Shanghai.  273 

The effect of pollutant accumulation caused by air mass transport represented by cluster 1 and 2 on the average PM2.5 274 

concentration is significantly greater than the effect of cluster 3 and 4 air mass transport on PM2.5. The average 275 

concentration of PM2.5 in Cluster 1 is slightly larger than that of Cluster 2. According to the length and source of the 276 

trajectories of the respective clusters, cluster 1 is greatly affected by the urban transmission in North China. Coal 277 
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combustion, biomass burning, vehicle exhaust and secondary sulfate contribution to PM2.5 concentration are greater than 278 

cluster 2. Cluster 2 mainly represents the pollution caused by the accumulation of PM2.5 concentration by local source 279 

emissions. In addition, the contribution of secondary nitrate to PM2.5 in cluster 2 is much larger than that of cluster 1. The 280 

contribution of secondary source to PM2.5 concentration is as high as 67.8%, and the secondary conversion of local source 281 

emission is more obvious. In clusters 1 and 2, SOA is a source of high contribution to total PM2.5 concentration. Both 282 

regional and local source emissions contain a large amount of organic matter, which is an important component of 283 

secondary source pollution. The dust source is also an important source of pollution caused by local emissions leading to 284 

atmospheric PM2.5 pollution.  285 

  286 

Figure 7. The percentage of sources under different air mass clusters. 287 

Under cluster 3 and 4, PM2.5 concentrations are relatively lower. Their biggest difference is the contribution of 288 

secondary sulfate and secondary nitrate in cluster 3 and cluster 4. Under the influence of the northern air mass transport, 289 

the proportion of secondary sulfate in cluster 4 is much larger than that of secondary nitrate, and also greater than the 290 

proportion of secondary sulfate in cluster 3. It indicates that cluster 4 is discharged from coal combustion in winter in 291 

northern China. And cluster 4 is a long-distance air mass transport, nitrogen oxides are more active in the atmosphere, and 292 

secondary nitrate contributes less in cluster 4 than in cluster 3. In general, in the winter, the coal combustion in the north 293 

of China and the biomass burning will affect the increase of PM2.5 concentration in Shanghai under the action of air mass 294 
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movement. The accumulation of pollutants caused by local source emissions in Shanghai is also an important cause of 295 

PM2.5 pollution in winter.  296 

3.1.3. Source contribution under different episodes 297 

In order to better understand the source composition characteristics of atmospheric particulates during pollution 298 

(PM2.5>75μg/m3), we selected three time periods for further analysis, PM2.5 concentration in the three periods is over 299 

75μg/m3 continuously or most of the time, as shown in Fig.8 (shaded area). The first episode (EP1) took place from 9 a.m. 300 

to 9 a.m. on November 19, 2018, and lasted 24 hours. The second episode (EP2) took place between 19 p.m. on November 301 

24 and 1 p.m. on November 26, 2018, during which the PM2.5 concentration decreased, but soon began to rebound. The 302 

third episode (EP3) lasts for a long time period, from 13 p.m. on November 27, 2018 to 7 a.m. on November 30, 2018, and 303 

the PM2.5 average concentration was the highest among the three episodes. It is worth noting that the pollution episode that 304 

occurred from November 9 to 12 was not selected because the concentration of PM2.5 was only over 75μg/m3 for a few 305 

hours. 306 

 307 

Figure 8. Pollution episodes and its PM2.5 concentration level 308 

The chemical characteristics of the selected three episodes are shown in Figure S5. It can be seen that the percentage 309 

of each component of PM2.5 in the total PM2.5 under three episodes has little difference, indicating that the component will 310 

not change much in a short time period. By analyzing the sources of PM2.5 in the three selected periods, it is found that the 311 

sources of PM2.5 do not follow this rule, as shown in Fig.9. To better understand the influence of regional sources on factors 312 

analyzed by PMF model, using the NOAA HYSPLIT model (https://ready.arl) for the three episodes, the 36-hour duration 313 

backward trajectory of the 100-meter AGL was calculated. 0.5 global data assimilation system meteorological data was 314 
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deployed every 6 hours.  315 

 316 

Figure 9. Source contributions under different episodes. 317 

Combining the trajectories of the three episodes (EP1: a; EP2: b; EP3: c& d, Fig.10), the process from pollution 318 

occurrence to pollution dissipation is a process that centers around the monitoring site, and the air mass entering the 319 

monitoring point from the north turns clockwise from the east to the south and enters the monitoring area. And with the 320 

increase of air mass movement in the vertical direction.  321 

The average PM2.5 concentrations observed during the three episodes were EP1: 96.2 μg/m3, EP2: 79.8μg/m3, and 322 

EP3: 109.1μg/m3, EP3>EP1>EP2. Generally speaking, PM2.5 concentrations are highest when the airflow originates from 323 

the mainland under prevailing northerly winds. When easterly and southerly winds prevail, the PM2.5 concentration 324 

observed under the influence of oceanic air mass is lower than that of air mass originating from the north. EP3 is greatly 325 

affected by the transition air mass, and the diffusion of adverse pollutants caused by the weak air flow in the vertical 326 

direction and small local wind speed leads to the accumulation of pollutants, resulting in the highest concentration of PM2.5. 327 

EP2 is mainly affected by the clean air flow from the south and some ocean air masses, and the vertical movement of the 328 

existing air flow is greater than EP3. Compared with EP2 and EP3, EP1 has a greater contribution to secondary sulphate 329 

factor under the influence of the northern continental air mass, which was close to the study of Hua et al. (2018) on the 330 

source analysis of PM2.5 in Beijing area. Additionally, secondary sulfate factor may also be affected by primary emission 331 

of coal combustion. Under the influence of the air quality of marine air mass and transition air mass, EP2 and EP3 show 332 

considerable contribution of secondary nitrates (EP2: 54.0% and EP3: 50.7%), while when the land air mass is dominant, 333 

the contribution rate is much lower (EP1: 24.1%). The contribution of biomass burning and coal combustion source factors 334 

show a changing pattern similar to that of secondary sulfate factors, the average contribution is the highest under the 335 

influence of northern air mass, followed by transitional and marine air mass. Under the influence of the southern air mass, 336 

the contribution of biomass burning and coal combustion source factors is the smallest, while the dust source is more 337 

 Secondary Nitrate  Secondary Sulfate  Vehicle Exhaust  Industrial Emission /Tire Wear  Industrial Emission 2

 Residual Oil Combustion  Dust  Coal combustion  Biomass Burning  Cooking  SOA

Episode 1 : modeled PM2.5=84.3 ug/m3

20.1%

1.4%

7.5%

9.5%

0.3%
2.3%

0.8% 13.9%

19.1%

24.4%

 

 

0.8%

Episode 2 : modeled PM2.5=83.9 ug/m3

1.3%

3.3%

4.1%

1.7%

0.4%
1.8%

6.3%

8.1%

 

 

54.0%

18.0%

1.0%

Episode 3 : modeled PM2.5=98.2 ug/m3

17.7%

1.1%

3.6%

2.3%
0.9%
0.7%

3.6%

6.9%

50.9%  

 

7.1%

5.0%

https://doi.org/10.5194/acp-2019-951
Preprint. Discussion started: 31 January 2020
c© Author(s) 2020. CC BY 4.0 License.



 

18 

affected by local and short-distance air mass transport. 338 

 339 

Figure 10. The backward trajectory by each episode. 340 

In EP1, SOA is the largest contributor to the combined effects of anthropogenic and biogenic sources (19.8%), mainly 341 

affected by the secondary conversion of OM carried by long-distance air mass from the north, while vehicle exhaust is 342 

mainly affected by the continental air mass, the secondary conversion is not obvious, and other factors have little effect. In 343 

general, due to differences in energy structure and production and living habits, biomass burning and coal combustion 344 

sources are greatly affected by airflow from the north, which indirectly affects the proportion of secondary sulfate and 345 

secondary nitrate in PM2.5. Air mass from the south and ocean is cleaner than air mass from the north. PM2.5 pollution is 346 

also affected by the vertical movement of air mass and horizontal wind speed. 347 
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3.2 Impact of organic tracers on source apportionment 348 

We also tested the PMF model without including the organic tracers to compare with the base PMF (MM-PMF), which 349 

includes the organic tracers. The input data for PMFt are given in Table S6. In PMFt, eight factors were resolved (see 350 

source profiles in Figure S6), and the three factors, biomass burning, cooking, and SOA could not be extracted due to the 351 

lack of the corresponding organic tracers. The correlation of the common factor contributions for each factor between PMFt 352 

and MM-PMF is shown in Table 3. Generally, the eight common factors, except for secondary sulfate and vehicle exhaust, 353 

the other six factors correlated well between the two runs (R = 0.906-0.993), indicating the robustness of the resolved 354 

factors. The secondary sulfate adds more organic matter (PAHs, organic acids, etc.) to the MM-PMF factor profile, showed 355 

a moderate correlation (R=0.665) between PMFt and MM-PMF.  356 

Table 3. Correlation (R) of common source factors between PMFt and MM-PMF 357 

MM-PMF      
PMFt 

Secondary 

Nitrate 

Secondary 

Sulfate 

Vehicle 

Exhaust 

Industrial 

Emission  

/Tire Wear 

Industrial 

Emission 2 

Residual Oil 

Combustion 
Dust 

Coal 

Combustion 

Secondary Nitrate 0.906 0.256 0.674 0.388 0.407 -0.036 -0.086 0.458 

Secondary Sulfate 0.187 0.665 -0.011 -0.311 0.387 -0.337 -0.377 0.29 

Vehicle Exhaust 0.352 -0.265 0.562 0.315 0.321 -0.063 0.094 0.514 

Industry / Tire Wear 0.413 -0.225 0.412 0.991 0.151 0.072 0.346 0.236 

Industry 2 0.523 -0.033 0.289 0.061 0.983 -0.144 -0.17 0.582 

Residual Oil 

Combustion 
-0.064 -0.346 -0.072 0.069 -0.167 0.993 0.264 -0.115 

Dust -0.169 -0.376 -0.196 0.277 -0.181 0.223 0.98 -0.026 

Coal combustion 0.573 -0.027 0.436 0.153 0.636 -0.122 -0.013 0.967 

The factor profiles of PMFt of the 8-factor solution is shown in Figure S6, and the difference of individual factor 358 

contribution to PM2.5 and to OC from MM-PMF and PMFt are show in Fig.11. And, among MM-PMF and PMFt results, 359 

the concentrations of reconstructed PM2.5 and OC are shown in Table S7.Compare the factor profiles and contributions of 360 

MM-PMF and PMFt, it can be found that the contribution from the secondary sources changed from (29.1 μg/m3) 63.8% 361 

of MM-PMF to (28.5 μg/m3) 63.9% of PMFt, while SOC changed from (2.9 μg/m3) 46.1% to (3.1 μg/m3) 48.9% of the 362 

total OC mass. The change in the factor profile of the secondary nitrate to PM2.5 is not obvious, and the contribution of 363 

secondary nitrate to PM2.5 was greater than that of secondary sulfate. While for OC, the contribution of secondary sulfate 364 

was greater than that of secondary nitrate in the two PMF analysis results. In addition, the source apportionment results 365 

under two scenarios showed that secondary sources accounted for 63.9% and 63.8% of the total mass of PM2.5 in PMFt 366 

and MM-PMF, respectively. 367 
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With the addition of organic tracers, contribuiton from vehicle exhaust dropped from 14.5% to 11.3% of MM-PMF, 368 

the correlation (R) of the vehicle exhaust between MM-PMF and PMFt was only 0.562 (Table 3), which is mainly because 369 

organic matters were added to the vehicle exhaust factor of MM-PMF, and the factor contribution time series diagram has 370 

changed. There was no significant change in the contribution of vehicle exhaust to OC. 371 

The contribution of industrial emission 2 and residual oil combustion sources to PM2.5 mass changed from 2.0% and 372 

3.1% in PMFt to 1.0% and 1.8% in MM-PMF. This is mainly because OC shifted from these two factors to the newly added 373 

source of MM-PMF. Due to the transfer of OC and other elements (Ca, and Zn, etc.) in the coal combustion, the proportion 374 

of this factor in PM2.5 decreased from 8.5% of PMFt to 6.7% of MM-PMF. Compared with MM-PMF, the concentration 375 

of OC in industrial emission 2, residual oil combustion and coal combustion in PMFt increased by 0.16, 0.14 and 0.25 376 

μg/m3, respectively.Generally, for the eight factors, the factor industrial emission /tire wear and dust were more stable, 377 

contributions of these two factors to total PM2.5 were relatively small, with little differences between MM-PMF and PMFt 378 

results (3.0% vs 2.9% and 5.0% vs 5.1%), whereas the contribution from dust to the total OC mass changed from (0.10 379 

μg/m3) 1.1% of MM-PMF to (0.24 μg/m3) 3.8% of PMFt. Compare the difference of individual factor contribution to OC 380 

from MM-PMF and PMFt, POC changed from 53.9% to 51.1% of PMFt of the total OC mass. 381 
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Figure 11. Difference of individual factor contribution to PM2.5 and to OC from MM-PMF and PMFt. 383 

4. Conclusions 384 

In this study, an intensive observation campaign was organized in winter to gain more insights into the sources and 385 
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formation of PM2.5 in Shanghai, a typical city in the Yangtze River Delta region. PM2.5 and its chemical components, 386 

including water-soluble inorganic ions, carbonaceous species, trace elements and organic markers (PAHs, sugars, organic 387 

acids, etc.) were measured with 1-h time resolution. By combining comprehensive data sets of chemical species into the 388 

PMF model for source analysis, the average contribution of secondary pollution sources is more than 60%. The MM-PMF 389 

with organic tracers added was further compared with the traditional PMF without organic tracers. MM-PMF further 390 

resolved the source contributions from SOA, biomass burning and cooking factors, which can’t be separated without 391 

organic tracers.  392 

Comparing the contributions of different sources to OC mass from MM-PMF, it can be seen that SOC and POC 393 

contributed 45.1% and 54.9%, respectively. The SOC associated with secondary nitrate and sulfate factors accounted for 394 

2.68 μg/m3 (41.3%) on average across all the study. The source of vehicle exhaust contributes the most to POC, in addition, 395 

it is worth noting that the contribution of cooking to PM2.5 mass only account for 2.6%, but it contribute 10.7% to OC. 396 

Comparisons of PM2.5 source composition under different air quality shows that the secondary nitrate contribution is 397 

much higher when PM2.5 concentrations are high. The data during the whole observation period were analyzed by backward 398 

trajectory clustering and four types of backward trajectories were analyzed separately. It was found that secondary nitrate 399 

was the main cause of air pollution in Shanghai. In addition, in the absence of pollution, vehicle exhaust sources still make 400 

a significant contribution. In winter, Shanghai area is greatly affected by the air mass from the northern area, which is an 401 

important cause of particulate pollution. In addition, adverse meteorological conditions may also cause the accumulation 402 

of particulate matter, resulting in air pollution. 403 
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